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Abstract. We investigate the way price fluctuations are transmitted between spatially separated markets.
More specifically we show that the correlation patterns of wheat prices exhibit definite regularities some of
which appear to be at variance with intuitive reasoning. Such patterns can be explained in the framework
of a wave propagation model based on the so-called spatial arbitrage assumption. In 19th century France
the velocity of price waves was of the order of 100 km/month. The economic implications of such an
order of magnitude are discussed. In the concluding section we emphasize that what gives this problem its
importance is its relative “simplicity”, a word for which we propose an operational definition.

PACS. 01.75.+m Science and Society – 46.30.My Vibrations, mechanical waves and shocks –
47.35.+i Hydrodynamic waves – 89.90.+n Other areas of general interest to physicists

1 Introduction

In economics there are usually more answers than there
are questions; or to say it in another way there are few
really challenging questions for which no plausible expla-
nations could be put forward. For example in order to “ex-
plain” a sudden peak in the price of a commodity a vari-
ety of mechanisms can be invoked: small yields due to bad
weather conditions, wage increase for plantation workers,
dwindling stocks, etc. In this paper we consider a ques-
tion for which no straightforward explanation seems to
be available. More specifically the paper shows that price
fluctuations in a set of spatially separated markets display
spatial as well as time-dependent patterns and that some
of them are at variance with intuitive reasoning. Secondly
it will be seen that by describing the price fluctuations
by a (stochastic) wave equation one can account for the
observed regularities; this justifies the expression “price
waves” that we used in the title.

1.1 The challenge

First of all let us present the issue which challenged our
curiosity. The observation concerns the behavior of wheat
prices on a number of different markets; the main results
are summarized in Figures 1a and 1b. Figure 1a shows
the intercorrelation of (the logarithms of) prices between
pairs of markets. The sample contains 11 markets, there-
fore there are 11 × 10/2 = 55 market pairs; each pair
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corresponds to one point. Not surprisingly the correlation
decreases with distance; although the specific rate of that
decrease would certainly require an explanation, at least
the overall trend is consistent with the intuitive idea that
more distant markets are less strongly interconnected.
One could list a variety of reasons for such a behavior.
Figure 1b is completely similar to Figure 1a except for the
fact that there is a 6-month lag between the time series.
The intriguing observation is of course that the correlation
is now increasing rather than decreasing. This is not the
only surprising observation as will be shown in Section 2.
Before coming to this, however, we would like to look at
the problem in a wider context.

1.2 Why should we study 19th century wheat prices?

When asked why he was claiming mountains Sir E. Hillary,
the conqueror of the Everest, is reported to have answered
“Because they are here”. We could answer the question
raised in the title of this paragraph in a similar vein.
As a matter of fact in the natural sciences (physics, bi-
ology) any phenomenon that displays definite empirical
regularities is deemed to deserve a thorough investigation.
Yet in economics the tradition is somewhat different and
Hillary’s answer would hardly prove adequate. A clue for
our interest in this problem is its “simplicity”. We try to
define that word more precisely in Appendix B. As far
as wheat prices are concerned let us remind the following
points:

(i) Before 1870-1875 wheat was by far the most impor-
tant good both in terms of trade and in terms of
consumption.

(ii) The prices of other cereals were closely correlated
with the prices of wheat (see in this respect [9]).
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Fig. 1. (a) Decrease of wheat price correlation with distance
(zero time-lag). Horizontal scale: kilometers. The sample con-
tains 11 markets located in the center of France. The series
are fortnight prices for the period 1841–1858. The coefficient
of linear correlation is equal to −0.88 (confidence interval at
probability 0.95: −0.79 to −0.94). Source for the data: [4]. (b)
Increase of wheat price correlation with distance (8-month lag).
Horizontal scale: kilometers. The sample of markets is the same
as in the previous figure. The correlation is equal to 0.55 (con-
fidence interval: 0.33 to 0.71). Source for the data: [4].

(iii) In a country such as 19th century France wheat ex-
ports or imports represented less than 5 percent of
total production (see in this respect [4], p. 18]); there-
fore the domestic market was only loosely connected
with foreign markets.

In short, because of its central importance in the econ-
omy the wheat market was only marginally affected by
shocks originating from other sectors, and because it was
largely self-sufficient it was also to a large extent isolated
from foreign disturbances. These circumstances explain
why the wheat market can be treated as an (almost) iso-
lated system.

2 The space-time pattern of wheat prices

For this study one needs a set of price series providing
a coverage of both time and space, that is to say prices
recorded on several market places distributed more or less

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 50 100 150 200 250

Fig. 2. Space-time correlation as a function of distance (hori-
zontal scale in kilometers) for different time-lags. From top to
bottom the time lags are: 0 month, 4 months, 8 months; the
corresponding coefficient of correlation are: −0.88, 0.31, 0.55;
the corresponding slopes expressed in 0.01/100 km are −1.6,
0.32, 1.8. The chart only shows the section of the curves for
short distances; for sufficiently large inter-market distances the
intercorrelations vanish of course. Source for the data: [4].

uniformly over the whole country, and for a time span of
at least 50 years.

2.1 The data

In 19th century France there were about 500 market places
for which prices were recorded without interruption from
1825 to 1913. This gives the possibility to study the space-
time properties of the price field in a detailed way. There
are comparable data (although with a smaller number of
markets) for Bavaria and Prussia. Similar data also ex-
ist for the 20th century; for instance in the United States
wheat prices are recorded on a state-level basis since the
1880s; those data are published annually by the USDA
(United States Dept of Agriculture: Agricultural Statis-
tics). It has been shown [11] that to a large extent the
20th century American wheat markets display the same
features than the French 19th century markets. One draw-
back of the American data is the fact that the prices
are state averages; therefore the location of the market
is poorly defined especially for the largest states such as
Texas, Oregon, Montana or Idaho.

In the following paragraphs we make a detailed study
of inter-market correlations. It is true that for farmers and
traders the meaningful variables are the price differentials;
these have been analysed in [11] in an equilibrium frame-
work. Here, however, our objective is to investigate the
dynamic aspects of price fluctuations and for that pur-
pose the intercorrelations are the adequate tools.

2.2 Price intercorrelations as a function of distance

Figure 2 shows the correlation ρt(x) as a function of inter-
market distance expressed in kilometers. As in Figure 1
each dot corresponds to a given market-pair. The three
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sets of dots respectively correspond to different time lags
t ranging from 0 to 8 months (the first and the last have
already been represented with different vertical scales in
Figs. 1a and 1b). For t = 0 the slope s of the regression line
is negative; for positive values of t it becomes positive and
then increases to about 0.018 per 100 km for a 8-month
lag.

2.3 Price intercorrelations as a function of time-lag

Figures 3a, 3b and 3c show the correlation ρx(t) as a func-
tion of the time-lag t for different market pairs. Figure 3a
is for markets which are about 100 kilometers apart,
Figure 3b for markets about 400 kilometers apart and Fig-
ure 3c for markets about 700 kilometers apart. The down-
ward trend of the curves was of course expected; more
surprising is the occurrence of a plateau which becomes
larger and larger as the distance between the markets in-
creases. Such a feature would be difficult to explain by
intuitive reasoning. In the following section we present a
mathematical model which displays the observed proper-
ties.

3 The space-time pattern of random waves

In this section the emphasis is on underlying assumptions
and on significant properties of the solutions; the mathe-
matical framework is briefly reviewed in Appendix A.

3.1 Underlying assumptions

How do markets interact? This is the first question that
has to be addressed. An answer is provided by the spa-
tial arbitrage assumption that has been formalized by
Samuelson in the 1950s [13]. Two markets do not inter-
act so long as their price difference is smaller than the
cost of transport. Once the price gap becomes larger than
the transport cost, wheat is shipped from the market with
the lowest price to the market with the highest price. This
mechanism is summarized diagrammatically in Figure 4.
The spatial arbitrage assumption has been at the basis of
the so-called spatial price equilibrium model which was in
vogue in the 1970s; see in this respect two very readable
books [1,5].

Even with such a seemingly simple assumption for the
interaction between markets the mathematical solution of
of the problem for a set of N markets is by no means
straightforward. Samuelson [13] was able to show that by
using a variational formulation the problem can be re-
duced to the so-called transportation problem in linear
programming, a problem which is itself of some complex-
ity however. Here we use a different approach leading to
analytical solutions.

Fig. 3. (a) Space-time correlation as a function of the time-
lag for two different pairs of markets. Horizontal scale: fort-
nights. Small dots: Albi-Montauban (64 km) 1825–1841; large
dots: Mende-Albi (120 km) 1825-1841. (b) Space-time corre-
lation as a function of the time-lag for two different pairs of
markets. Horizontal scale: fortnights. Small dots: Beaugency-
Mende (390 km) 1833–1850; large dots: Clermont-Pau (390
km) 1825-1841. (c) Space-time correlation as a function of the
time-lag for two different pairs of markets. Horizontal scale:
fortnights. Small dots: Douai-Montauban (720 km) 1830–1846;
large dots: Arras-Albi (710 km) 1830–1846. Source for the
data: [4]

3.2 The field equation

Once translated into a stochastic framework the spatial ar-
bitrage assumption leads to the so-called SERS model [10].
Instead of considering a finite set of markets as would
be natural, we write the SERS model for an infinite and
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Fig. 4. Illustration of the spatial arbitrage assumption. For
trade to take place between markets A and B the average price
differential ∆p between two markets has to be larger than cur-
rent transport costs. In that case the quantity of wheat shipped
from A to B is determined by the excess-supply functions for
each market. Two circumstances contribute to complicate the
situation: (1) transport costs strongly fluctuate in the course of
time and are not statistically well-known. (ii) Trade reacts to
the price gap with a substantial (but fairly unknown) inertia.

continuous set of markets; such a shift makes the model
mathematically tractable.

3.2.1 The field equation and its solution

The stochastic price field p(x, t) obeys the following
stochastic partial differential equation:

Lp(x, t) = N(x, t) (1)

where the linear differential operator L is defined through:

L(∂x, ∂t) = (1/c2)∂2
t2 + 2b∂t + a2 − ∂2

x2

and where N(x, t) represents Gaussian random distur-
bances.

The parameters a, b, c are expressed in the following
units of measure:

[a] = 1/[L] [b] = [T ]/[L2] [c] = [L]/[T ].

In terms of dimensional analysis c is similar to a veloc-
ity; in fact the determistic analogue of equation (1) is
known [6] to describe the propagation of a wave in a dis-
persive medium (dispersive means that waves with differ-
ent frequencies travel with somewhat different velocities).
In what follows c will be considered as an estimate of the
wave velocity.

In this paper we are interested in the space-time cor-
relation function ρ(x, t) that is to say the correlation be-
tween the prices p(x′, t′) and the prices p(x′ + x, t′ + t)
at a point shifted by the distance x and the lag t. The
correlation function resulting from the mathematical so-
lution of equation (1) is given in Appendix A. Here we
shall mainly focus on its qualitative features. One of these
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Fig. 5. Space-time correlation function as a function of time-
lag for four different distances on each chart. Horizontal scale:
time lag. (a) corresponds to the parameters: a = 1, b = 0.1,
c = 0.5. From top to bottom the curves correspond to distances
equal to 0, 1, 2, 3, (b) corresponds to a = 0.0103, b = 6×10−6,
c = 31. From top to bottom the curves correspond to distances
equal to 0, 100, 200, 300. The figure provides a verification of
the scaling property; because the space and time variables have
been rescaled, the curves have the same shape in spite of the
fact that the parameter sets are different.

is the scale invariance property which can be formulated
in the following terms:

If the distances are changed by a scale factor λ and
if the time scale is divided by a factor θ, i.e.: x =
λx′ t = θt′, then the solution ρ(x, t; a, b, c) is changed
into ρ(x′, t′; a′, b′, c′) where:

a′ = aλ, b′ = bλ2/θ, c′ = cθ/λ.

That statement is illustrated in Figures 5a and 5b. As can
be seen the curves for the correlation ρx(t) are identical
on both figures in spite of the fact that they correspond to
different sets of parameters, namely: a = 1, b = 0.1, c =
0.1 for Figure 5a, and a′ = 1.03×10−2, b′ = 6×10−6, c′ =
31 for Figure 5b. Simultaneously the distance and time
scales have been changed when going from Figure 5a to
Figure 5b; denoting the variables in the first figure by x, t
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Fig. 6. Space-time correlation function as a function of dis-
tance. Horizontal scale: distance. Both charts correspond to
the same set of parameters, namely: a = 1, b = 0.1, c = 0.5;
(a) gives a detailed view for small values of x and t; from top to
bottom, the time-lags are equal to 0, 0.5, 1, 1.5, 2; (b) shows
the overall shape of the curves; from top to bottom (on the
vertical axis) the time-lags are equal to 0, 4, 8, 12.

and those in the second by x′, t′ one has the relationship:

x = 10−2x′; t = 0.63t′.

This is indeed consistent with the above rule where λ =
10−2, θ = 0.63.

3.3 Price correlation as a function of distance

Figure 6a shows the price correlation ρt(x) as a function of
x for different time lags. The slope for small x (i.e. the left
hand side of the curves) is first negative for small values
of t, then goes through zero and, once positive, becomes
larger and larger in agreement with the observation made
in Figure 2. Figure 6b provides a more comprehensive pic-
ture for larger intervals of variation for both x and t. It
shows that the pattern we observed in Figure 6a is only
part of the story: beyond t = 2.5 the slope and the level
of the curves change in an opposite direction. However

such curves correspond to large time lags which would in
practice be of the order of several years; furthermore the
corresponding correlation levels are fairly low (between
−0.3 and 0.3) and are therefore difficult to measure.

3.4 Price correlations as a function of time lags

Figure 5a shows the price correlation ρx(t) for the same
set of parameters than Figure 6a. There are distinctive
plateaus for small t; in agreement with observation (Fig. 3)
their length increases along with the value of x. In fact it
can be shown that the length of a plateau is equal to x/c.

Obviously Figure 5a and Figures 6a, 6b are two differ-
ent representations for the same function of the variables
x and t. For instance, the plateaus in Figure 5a correspond
in Figures 6a and 6b to the sections which are common to
different curves; thus for x = 1 it can be seen in Figure 6a
that the curves for 0 < t < 2 are merged, in other words
ρt(x = 1) is independent of t; this is indeed consistent
with the plateau (0, 2) for the curve x = 1 in Figure 5a.

In conclusion one can say that there is a good qual-
itative agreement between the random wave model and
observed properties of the space-time correlation function.

3.5 Order of magnitude of the parameters

Before we perform a systematic adjustment of the model
it is of interest to see if we can obtain reliable estimates
for some of the parameters from the properties mentioned
above.

The parameter a can be obtained fairly easily from
the space-like section of the solution corresponding to a
zero lag: ρt=0(x) = e−ax. Figure 1a shows that ρt=0(x)
decreases very slowly from 1 to 0.95 which means that
ax certainly remains small throughout the whole x range;
therefore e−ax can be developed to first order: ρt=0 '
1 − ax; in other words, a is the slope of the regression
line and its inverse coincides with the so-called correlation
length [8]. Thus one obtains: 1/a = 621 km or a = 1.6×
10−4 km−1.

The parameter c can be estimated from the length of
the plateaus in Figures 3a, 3b, and 3c. This leads to: c ∼
48 km/fortnight.

The parameter b could in principle be estimated from
the pseudo-period of the correlation function. Yet, this
pseudo-period very often turns out to be too long (of the
order of about 3 years) to be measured with some ac-
curacy. It should also be mentioned that the correlation
function depends upon b in a fairly loose way.

3.6 Parameter adjustment

The curves in Figure 7 provide a comparison of the esti-
mated model to observations. The curve without a plateau
is the average intercorrelation for the market pairs Bernay-
Evreux and Carcassonne-Toulouse in the period 1825–
1841 (the average distance is 64 km). The estimated pa-
rameters are: a = 5.6 × 10−4, b = 3.6 × 10−6, c = 48.
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Fig. 7. Comparison of the estimated model to observation.
The dots corresponds to the observations. The curves are the
theoretical adjustements. The curve without a plateau is the
average intercorrelation for the market pairs Bernay-Evreux
and Carcassonne-Toulouse (1825–1841), average distance is 64
km. The curve with the plateau is the average intercorrelation
for the market pairs Carcassonne-Bernay and Carcassonne-
Evreux (1825–1841); average distance is 655 km. The estimated
parameters are indicated in the text.

The curve with the plateau is the average intercorrela-
tion for the pairs: Carcassonne-Evreux and Carcassonne-
Bernay in the period 1825–1841 (the average distance
is 655 km). The estimated parameters are: a = 9.2 ×
10−4, b = 2.6× 10−5, c = 48.

3.7 Economic interpretation

How should the previous wave velocities of the order of
50–100 km/month be interpreted? A first remark is in
order about the very notion of price waves. One should
not expect the kind of waves that are to be observed when
a stone is tossed into a pond because here each market is
subject to local disturbances. If one wants to stick to the
image of the pond one should rather imagine a pond in
which a lot of children are playing. Alternatively one could
imagine the waves produced in a pond by drops of heavy
rain. In each case the surface of the water would be quite
chaotic with small waves moving in every direction. Yet
the speed of those waves nonetheless would be gouverned
by the laws of hydrodynamics.

Let us now see how we should interpret the order of
magnitude of the velocity: 100 km/month corresponds (as-
suming 12 hours per day) to a speed of 0.3 km/hour; this
is clearly slower than any possible means of transporta-
tion; even the slowest of them namely transportation by
barges is faster than 0.3 km/hour. What we know about
the wheat trade in the 19th century provides an explana-
tion.

Before the introduction of railways in the 1860s wheat
cargos were rarely shipped over more than 100 km at one
time in the center of France. First the wheat was brought
by the farmer to the local wheat market (say Bernay for
instance) within a radius of less than 40 km of the pro-
duction place. There it would be bought after a while by

a (local) trader and carried over to the nearest provincial
capital (say Rouen for instance); from the provincial cap-
ital it may eventually go to Paris or into the international
trade. At each market place the wheat would have to be
stocked until sold. In short, wheat travelled by small steps
with more or less long waiting times after each step. A sim-
ilar process accounts for the propagation of epidemics: a
contaminated person A travels, meets and contaminates
B; the incubation of B will take several days (or weeks)
after which B will be able to contaminate a third person
C, and so on. As a matter of fact the evidence shows that
the propagation speed of epidemics is strongly correlated
with the duration of the incubation period. For instance
for the plague the incubation time is of the order of several
days and the velocity of the order of 100 km/month, while
for Asiatic cholera the incubation interval is less than one
day and the velocity is of the order of 800 km/month [2].

Is the wave velocity strongly dependent on the fre-
quency of the fluctuations? The answer is provided by the
dispersion relation; if we neglect the small friction term b
the latter reads:

ω = c
√
k2 + a2

where ω denotes the angular velocity 2π/T and k the wave
number which is related to the wave length λ by k = 2π/λ.
The phase velocity is then given by: vφ = ω/k and the
group velocity is given by:

vg =
dω

dk
=

kc
√
k2 + a2

·

The phase velocity is always larger than c while the group
velocity is always smaller than c; however because a is
fairly small, both velocities are in fact not very different
from c; three typical values are given in the table below
for the following set of parameters a = 10−3 km−1, c =
31 km/fortnight:

T λ vφ vg
[fortnight] [km] [km/fortnight] [km/fortnight]

0.17 5.3 31 31
2 63 31 31
72 2387 34 28

The first line corresponds to a frequency of three times
a week which was the frequency of the wheat markets in
fairly active cities; the last line corresponds to a period of
three years. Thus the velocities are substantially different
from c only for very low frequencies.

3.8 Evolution of the parameters in the course of time

In a physical system (air, water, copper) the velocity of
sound remains constant at least under fixed conditions
of temperature and pressure. By contrast the parame-
ters a, b, c characterizing the interactions in the network
of markets do not remain constant in the course of time.
Both short term fluctuations and a long-term trend can be
observed. The following table summarizes some evidence
for the parameters a and c.
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France France France United States
1825−1841 1850−1866 1875−1891 1954−1986

a104 [1/km] 9.0 2.4 6.6 0.18
c [km/month] 70 186 302 –

As could be expected the velocity increases along with
technical progress in means of transportation.

4 Conclusion

In this paper we have shown that a time-dependent prop-
agation model based on the spatial arbitrage assumption
is able to throw some light on the intriguing evidence dis-
played by the space-time correlation functions. One should
also point out that in its equilibrium formulation that
model provides yet other predictions for variables of eco-
nomic significance, namely for the price differentials be-
tween distant markets, for the volatility (i.e. the standard
deviation) of prices on a single market, and for the trade
within a given set of markets. Let us briefly examine to
what extent such predictions can be tested against empir-
ical evidence and how such tests could be improved.

(i) In order to improve the testing of the propagation
model one would need data for a larger number of
markets in a fairly homogeneous region, that is to
say a region without ports and without mountains.
Such data exist and can be collected for instance at
the French National Archives (Paris).

(ii) As far as price differentials are concerned, the model
predicts that they should increase with distance at
first linearly, then with a diminishing rate for larger
distances; such a prediction is indeed confirmed by
available evidence (see in this respect [11]).

(iii) As is made clear by Figure 4 spatial arbitrage tends
to redistribute available stocks to the markets where
supply is insufficient. One should therefore not be
surprised that there is a connection between the level
of transportation cost and the price volatility on a
given market. Unfortunately the price volatility also
crucially depends on other factors (such as for in-
stance the elasticity of production with respect to the
price level) which have not been taken into account
in this model. Nevertheless in earlier periods (from
the 17th to the 19th century) where production con-
ditions did not change markedly there is conclusive
evidence for a decrease in the volatility along with di-
minishing transport costs; see in this respect [7,10].

(iv) Spatial arbitrage results in exchanges of cargoes of
wheat between different markets. Therefore it is not
surprising that the model predicts a specific relation-
ship between average price differentials and the over-
all volume of trade. Yet, such a prediction is difficult
to test empirically for at least two reasons. Since the
19th century wheat production exhibited a strong up-
ward trend while in the model it has implicitly been
assumed to be constant on average. Furthermore in-
ternational trade is limited and biased by a number
of factors such as tariffs, importation quotas, bilat-
eral contracts, etc. On the other hand domestic inter-

regional trade which would be free of such pitfalls is
poorly documented at the statistical level.

So far only limited attention has been given to empir-
ically analyzing the role of distance in economics. While
the issue considered in this paper belongs to the field of
microeconomics the role of spatial factors is much larger.
For instance a number of cultural traits and traditions
are of the diffusive type, by which we mean that they are
strongly correlated with distance. Such features may have
important implications in terms of institutional rules and
market organization. In that matter the main difficulty is
to find empirical data which permit a quantitative descrip-
tion; for an attempt in that direction see [12].

The price data are available upon request from the
author.

Appendix A: The stochastic field equation

In this Appendix we derive some properties for the solu-
tions of the model’s field equation.

A.1 The solution ρ(x, t)

The space-time correlation function ρ(x, t) is defined in
the usual way: ρ(x, t) = c(x, t)/c(0, 0) with the covariance
c being defined by:

c(x, t) = Cov[p(x′, t′), p(x′ + x, t′ + t)]

= E[(p(x′, t′)− pm)(p(x′ + x, t′ + t)− pm)].

If, as is assumed here, the process is stationary in time
and space, the covariance c only depends upon x and t,
and not upon x′ and t′.

The stochastic price field p(x, t) satisfies an equation
of the form: L(∂x, ∂t)p(x, t) = N(x, t) where L is the dif-
ferential operator given above in equation (1). Here we
are rather interested in the covariance function c(x, t); it
satisfies the following equation:

L(∂x, ∂t)L(−∂x,−∂t)c(x, t) = cN (x, t) (A.1)

where cN (x, t) denotes the covariance function of the dis-
turbances N(x, t). The solution of equation (A1) is ob-
tained through Fourier analysis (see [10]); its normalized
form ρ(x, t) = c(x, t)/c(0, 0) reads (x and t are supposed
to be positive):

ρ(x, t) =


e−ax x > ct

(−ac)
t∫

x/c

G(x, t′)dt′ + e−ax x < ct (A.2)

where:

G(x, t) = e−bct
2

J0

[√
(a2 − b2c2)(c2t2 − x2)

]
Y (ct− x)

J0 is the Bessel function and Y denotes the Heaviside
function.

It can be verified that:

lim
x→∞

ρ(x, t) = 0 lim
t→∞

ρ(x, t) = 0
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A.2 Scaling laws

We consider the rescaled variables x′ and t′ defined by:
x = λx′ t = θt′.

Substituting into equation (1) leads to:

[(1/c2θ2)∂2
t′2 + 2(b/θ)∂t′ + a2 − (1/λ2)∂2

x′2 ]p = N.

Multiplying both sides by λ2 gives:

[(λ/θ)2(1/c2)∂2
t′2 + 2(bλ2/θ)∂t′ + (aλ)2 − ∂2

x′2 ]p = Nλ2.

This leads to the rescaled parameters:

a′ = aλ b′ = bλ2/θ c′ = cθ/λ.

If we restrict ourselves to the correlation function the scal-
ing factor λ2 in the right hand side becomes irrelevant
because the correlation function does not depend on the
variance of the disturbance term.

A.3 Pseudo-period

For practical (for instance estimation) purposes it can be
of interest to have an estimate of the pseudo-period of
ρx(t) for large t; such an estimate can be obtained from the
following heuristic reasoning. Equation (A2) shows that
ρ(x, t) is the integral of a Bessel function J0. The latter
has a pseudo-period of the order of 6; in the large t region
one can approximate c2t2 − x2 by c2t2; this leads for the
function J0

[√
a2 − b2c2ct

]
to a pseudo-period of the order

of: 6/(c
√
a2 − b2c2). When tested on numerical examples

(see for instance Figs. 5a and 5b) this approximation turns
out to be reasonably effective.

Appendix B: Why the interaction between
wheat markets can be considered as one of
the simplest possible problems in economics

We strongly believe that one of the main contributions
econophysics can make to economics is to show what is
to be gained by considering problems on account of their
simplicity rather than because of their relevance for policy
purposes. Let us first develop that point before discussing
how it is related to the topic of the present paper.

For most fields there is usually an experiment which
provides both a firm foundation and a paradigm for fur-
ther developments. Galileo experiments (e.g. those with a
cylinder rolling down a slope) laid the basis of mechan-
ics, Carnot’s discussion of a machine using a hot and a
cold source was a starting point for thermodynamics, the
hydrogen atom provided a key for the understanding of
the spectroscopy of more complex atoms, Mendel’s exper-
iments on a character determined by two forms of a gene
were at the origin of genetics. It can be noted that these
problems were all in a sense two-body problems.

In economics the typical two-body problem would be a
market with only one producer and one consumer (microe-
conomics) or an economy with only two sectors (macroe-
conomics). These cases have indeed received considerable
attention as theoretical models. But unfortunately (and in
contrast to the problems we mentioned above) no real eco-
nomic system seems to match such simple assumptions. In
other words it was impossible to check the predictions of
the basic two-agent model against empirical evidence. As
a result such models could hardly provide a firm basis for
the investigation of more complicated cases.

In terms of increasing complexity, after the two-body
problem comes the N -body problem for identical bodies
and a single type of interaction. Is there an economic phe-
nomenon matching those assumptions? The main theme
of the present paper was precisely to show that the 19th
century wheat markets indeed are a good approximation
of such a N -body problem, provided local perturbations
are allowed at each marketplace. In other words one of the
simplest possible economic system is of a degree of com-
plexity similar to the one- (or, more realistically, the two-)
dimensional Ising model with random perturbations.

The next level of complexity would be a N -body prob-
lem for non-identical bodies and, as a consequence of the
bodies being non-identical, different sorts of interactions.
A model of a national economy comprising N sectors
clearly belongs to that class. Of course it can be treated
in a phenomenological way which is the approach used by
macroeconomics, but from a theoretical point of view one
should keep in mind that this is already a very difficult
problem.

The 4th level of complexity would refer to interactions
between N different components each of which consists it-
self of various sub-components. This is the problem of in-
ternational economics: interaction between different coun-
tries Ci each of which has ni sectors.

Just for the sake of illustration let us assume that, in-
stead of performing its simple experiments, Galileo had
tried to solve a more “practical” problem for instance the
rolling movements of a ship. In that case he would per-
haps have been able to propose a phenomenological model
(restricted of course to one type of ship) but he would cer-
tainly not have laid down the foundations of mechanics.

The complexity scale proposed in this appendix can be
tested so to say experimentally by going back to the times
of Galileo (1564–1642) and of Descartes (1596–1650). The
number and the difficulty of the problems Descartes tried
to solve in his “Discourse on method, optics, geometry and
meteorology” (1637, 1965) [3] is staggering even for the
physicist of 1998. As a result the “explanations” he offered
most often are only qualitative and completely ad hoc.
Interestingly, the only field where he is really successful is
optics (e.g. the rainbow or the eye) and this is precisely a
two-body problem (interaction between light and matter).
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